Interactive Formal Verification 10: Structured Proofs

Tjark Weber (Slides: Lawrence C Paulson) Computer Laboratory University of Cambridge

 $b dvd a \leftrightarrow (\exists k. a = b \times k)$

$\odot \odot \odot$	Struct.thy	\bigcirc
∞ ∞ ∡ ◄ ► ⊻	. H 🖀 🔎 🕦 🐖 😄 🤣 🚏	
		6
		0
	<)) = (k dvd (n::nat))"	
apply (auto simp add	1: dvd_def)	
		-
		The second secon
-u-:**- Struct.thy	12% L22 (Isar Utoks Abbrev; Scripting)-	
proof (prove): step	1	n
goal (2 subgoals):	* ka ⇒ ∃ka. n = k * ka	
2. \bigwedge ka. \exists kb. k * ka		

 $b dvd a \leftrightarrow (\exists k. a = b \times k)$

 $b dvd a \leftrightarrow (\exists k. a = b \times k)$

 $b dvd a \leftrightarrow (\exists k. a = b \times k)$

 $b dvd a \leftrightarrow (\exists k. a = b \times k)$

- Isabelle provides many tactics that refer to bound variables and assumptions.
 - Assumptions are often found by matching.
 - Bound variables can be referred to by name, but these names are fragile.

- Isabelle provides many tactics that refer to bound variables and assumptions.
 - Assumptions are often found by matching.
 - Bound variables can be referred to by name, but these names are fragile.
- Structured proofs provide a robust means of referring to these elements by name.

- Isabelle provides many tactics that refer to bound variables and assumptions.
 - Assumptions are often found by matching.
 - Bound variables can be referred to by name, but these names are fragile.
- Structured proofs provide a robust means of referring to these elements by name.
- Structured proofs are typically verbose but much more readable than linear apply-proofs.

A Structured Proof

```
000
                                    Struct.thy
                                                                             \bigcirc
oo oo 工 ┥
                 I 🛨 🛏 🖀 🔎 🎧 🕼 🖉 🕀 🚏
lemma "(k dvd (n + k)) = (k dvd (n::nat))"
 proof (auto simp add: dvd_def)
  fix m
  assume "n + k = k * m"
  hence "n = k * (m - 1)"
    by (metis diff_add_inverse diff_mult_distrib2 nat_add_commute nat_mult_1_rig
ht)
 thus "∃m'. n = k * m'"
by blast
next
  fix m
  show "∃m'. k * m + k = k * m'"
    by (metis mult_Suc_right nat_add_commute)
aed
-u-:--- Struct.thy
                                 (Isar Utoks Abbrev; Scripting )------
                        2% L11
proof (prove): step 6
 using this:
  n = k * (m - 1)
goal (1 subgoal):
 1. ∃m'. n = k * m'
-u-:%%- *goals*
                       Top L1
                                 (Isar Proofstate Utoks Abbrev;)------
tool-bar goto
                                       But how do you
                                         write them?
```

The Elements of Isar

The Elements of Isar

- A proof context holds local variables and assumptions of a subgoal.
 - In a context, the variables are free and the assumptions are simply theorems.
 - Closing a context yields a theorem having the structure of a subgoal.

The Elements of Isar

- A proof context holds local variables and assumptions of a subgoal.
 - In a context, the variables are free and the assumptions are simply theorems.
 - Closing a context yields a theorem having the structure of a subgoal.
- The Isar language lets us state and prove intermediate results, express inductions, etc.

Getting Started

00		Struct.thy	\bigcirc
သ က 🗶 🔺 🕨 🗴	🗆 🛏 🖀 🔎 -	🚯 🕼 🤤 🤣 🚏	
lemma "(k dvd (n +		(n::nat))"	ń
proof (auto simp ad	d: dvd_def)		0
			A V
u-:**- Struct.thy	11% L22	(Isar Utoks Abbrev; Scripting)	
proof (state): step	1		n
proof (scace). scep	1		
<pre>goal (2 subgoals):</pre>	*		- 11
1. ∧ka. n + k = k 2. ∧ka. ∃kb. k * k			- 11
			4
u • 4/0/ * apal c*	Top 11	(Tean Droofstate Utoks Abbrows)	Ψ.
-u-:%%- *goals*	Top L1	(Isar Proofstate Utoks Abbrev;)	
			14

Getting Started


```
\odot \bigcirc \bigcirc
                                      Struct.thy
                                                                                  \bigcirc
00 00 I 🔺 🕨 Y 🛏 🆀 🔎 🗊 🐷 🤤 🤣 🚏
lemma "(k dvd (n + k)) = (k dvd (n::nat))"
proof (auto simp add: dvd_def)
 fix m
  assume "n + k = k * m"
  show "∃m'. n = k * m'"
   sorry
next
 fix m
  show "∃m'. k * m + k = k * m'"
   sorry
aed
-u-:**- Struct.thy 11% L21 (Isar Utoks Abbrev; Scripting)-------
Successful attempt to solve goal by exported rule:
(n + k = k * ?m2) \implies \exists m' \cdot n = k * m'
Successful attempt to solve goal by exported rule:
  \exists m'. k * ?m2 + k = k * m'
lemma (?k dvd ?n + ?k) = (?k dvd ?n)
-u-:%%- *response*
                       All L7
                                   (Isar Messages Utoks Abbrev;)------
```

$\odot \odot \odot$	1	Struct.thy		\bigcirc
∞ ∞ ∡ ◄ ► ⊻	H 🖀 🔎 🚯 🕫	r 😄 🤂 🚏 👘		
lemma "(k dvd (n + k)		at))"		ń
<pre>proof (auto simp add: fix m</pre>	dvd_def)	a name for	r the bound variable	
assume "n + k = k *				
show " $\exists m'$. $n = k *$	n*"			
next				
fix m				
<pre>show "∃m'. k * m + sorry</pre>	c = k * m'''			
qed				
				U
-u-:**- Struct.thy			Scripting)	
Successful attempt to (n + k = k * ?m2) =		•		Π
Successful attempt to	solve goal by a	vnorted rule:		ш
Successful attempt to $\exists m' \cdot k * ?m2 + k =$		xporteu rute.		
				U
lemma (?k dvd ?n + ?k) = (?k dvd ?n)			Å
-u-:%%- *response*	All L7 (Is	ar Messages Utok	s Abbrev;)	
				11.

00	Struct.thy	\bigcirc
သ က 🗶 🔺 🕨 🖸	¥ H 🖀 🔎 🚯 🐖 🖨 🤣 🚏	
proof (auto simp ac fix m		
<pre>assume 1: "n + k have 2: "n = k * sorry</pre>	= k * m" (m - 1)" using 1	- 1
show "∃m'. n = k	* m'" using 2	- 1
by blast		- 1
next fix m		- 1
show "∃m'. k * m	+ k = k * m'''	- 1
sorry		
qed		4
-u-:**- Struct.thv	15% L37 (Isar Utoks Abbrev; Scripting)	<u> </u>
Successful attempt	to solve goal by exported rule:) $\implies \exists m'. n = k * m'$	Î
Successful attempt ∃m'. k * ?m2 + k	to solve goal by exported rule: = k * m'	
lemma (?k dvd ?n +	?k) = (?k dvd ?n)	
-u-:%%- *response*	All L7 (Isar Messages Utoks Abbrev;)	
		1

$\odot \odot \odot$	Struct.thy	\bigcirc
00 CO 🛛 🔺 🕨 🗴	()M 🖀 🔎 🕕 🕼 🗢 🗢 🚏	
lemma "(k dvd (n + proof (auto simp ad fix m	k)) = (k dvd (n::nat))" d: dvd_def)	
assume 1: "n + k = have 2: "n = k * sorry show "∃m'. n = k *	(m - 1)" using 1 inserting a helpful fact	
by blast next fix m show "∃m'. k * m ·	+ k = k * m'"	
qed		
	15% L37 (Isar Utoks Abbrev; Scripting)	
	to solve goal by exported rule: ⇒ ∃m'. n = k * m'	n
Successful attempt ∃m'. k * ?m2 + k	to solve goal by exported rule: = k * m'	
lemma (?k dvd ?n +	?k) = (?k dvd ?n)	 ▼
-u-:%%- *response*	All L7 (Isar Messages Utoks Abbrev;)	
		11.

Completing the Proof

```
\odot \bigcirc \bigcirc
                                      Struct.thy
                                                                                  \bigcirc
00 00 🔳 🔺 🕨 🗶 🛏 🖀 🔎 🌒 🐷 🤤 🤣 🚏
lemma "(k dvd (n + k)) = (k dvd (n::nat))"
 proof (auto simp add: dvd_def)
  fix m
  assume 1: "n + k = k * m"
   have 2: "n = k * (m - 1)" using 1
     by (metis diff_add_inverse diff_mult_distrib2 nat_add_commute nat_mult_1_rig ≥
ht)
   show "\exists m'. n = k * m'" using 2
     by blast
 next
 fix m
 show "∃m'. k * m + k = k * m'"
    sorry
 aed
-u-:**- Struct.thy 20% L65 (Isar Utoks Abbrev; Scripting )-----
 Sledgehammer: external prover "spass" for subgoal 1:
 \exists m'. k * m + k = k * m'
Try this command: apply (metis mult_Suc_right nat_add_commute)
 For minimizing the number of lemmas try this command:
 atp_minimize [atp=spass] mult_Suc_right nat_add_commute
 Sledgehammer: external prover "e" for subgoal 1:
 \exists m'. k * m + k = k * m'
-u-:%%- *response* Top L1 (Isar Messages Utoks Abbrev;)-----
menu-bar Isabelle Commands Sledgehammer
```

Completing the Proof

```
\odot \bigcirc \bigcirc
                                     Struct.thy
00 00 I 🔺 🕨 Y 🛏 🖀 🔎 🗊 🐷 🤤 🤣 🚏
 lemma "(k dvd (n + k)) = (k dvd (n::nat))"
 proof (auto simp add: dvd_def)
  fix m
   assume 1: "n + k = k * m"
   have 2: "n = k * (m - 1)" using 1
     by (metis diff_add_inverse diff_mult_distrib2 nat_add_commute nat_mult_1_rig
ht)
   show "\existsm'. n = k * m'" using 2
                                             found using sledgehammer
     by blast
 next
  fix m
  show "∃m'. k * m + k = k * m'"
     sorry
 aed
-u-:**- Struct.thy 20% L65 (Isar Utoks Abbrev; Scripting )-----
 Sledgehammer: external prover "spass" for subgoal 1:
 \exists m'. k * m + k = k * m'
 Try this command: apply (metis mult_Suc_right nat_add_commute)
 For minimizing the number of lemmas try this command:
 atp_minimize [atp=spass] mult_Suc_right nat_add_commute
 Sledgehammer: external prover "e" for subgoal 1:
 \exists m'. k * m + k = k * m'
-u-:%%- *response*
                       Top L1 (Isar Messages Utoks Abbrev;)----
menu-bar Isabelle Commands Sledgehammer
```

Completing the Proof

```
\odot \bigcirc \bigcirc
                                     Struct.thy
                 I 🗹 🛏 🚄 🔎 🚺 🕼 🖕 💱
00 00 🔳
lemma "(k dvd (n + k)) = (k dvd (n::nat))"
 proof (auto simp add: dvd_def)
  fix m
  assume 1: "n + k = k * m"
  have 2: "n = k * (m - 1)" using 1
     by (metis diff_add_inverse diff_mult_distrib2 nat_add_commute nat_mult_1_rig
ht)
  show "\existsm'. n = k * m'" using 2
                                             found using sledgehammer
     by blast
 next
  fix m
  show "∃m'. k * m + k = k * m'".
    sorry
                     20% L65 (L50 sledgehammer does it again!
 aed
-u-:**- Struct.thy
 Sledgehammer: external prover "spass" for subgoal 1:
 ∃m'. k * m + k = k * m' 🖌
 Try this command: apply (metis mult_Suc_right nat_add_commute)
 For minimizing the number of lemmas try this command:
 atp_minimize [atp=spass] mult_Suc_right nat_add_commute
 Sledgehammer: external prover "e" for subgoal 1:
 \exists m'. k * m + k = k * m'
-u-:%%- *response*
                       Top L1 (Isar Messages Utoks Abbrev;)---
menu-bar Isabelle Commands Sledgehammer
```

assume 1: "n + k = k * m"
have 2: "n = k * (m - 1)" using 1
 by (metis diff_add_inverse diff
show "∃m'. n = k * m'" using 2

hence means have — using the previous fact

- hence means have using the previous fact
- thus means show using the previous fact

- hence means have using the previous fact
- thus means show using the previous fact
- There are numerous other tricks of this sort!
```
000
                                     Struct.thy
                                                                                \bigcirc
00 00 I 🔺 🕨 Y 🛏 🖀 🔎 🕦 🐷 🤤 🤣 🚏
lemma abs_m_1:
fixes m :: int
assumes mn: "abs (m * n) = 1"
  shows "abs m = 1"
proof -
 have 0: "m \neq 0" using mn
    by auto
  have "~ (2 \le abs m)"
    sorry
thus "abs m = 1" using 0
    by auto
qed
-u-:--- Struct.thy 35% L116 (Isar Utoks Abbrev; Scripting )------
Successful attempt to solve goal by exported rule:
 |\mathbf{m}| = 1
lemma abs m 1:
?m * ?n! = 1 \implies ?m! = 1
-u-:%%- *response*
                      All L5
                                 (Isar Messages Utoks Abbrev;)------
tool-bar goto
```

000 Struct.thy \square 00 00 I 🔺 🕨 I 🖂 着 🔎 🐧 specify m's type lemma abs_m_1: fixes m :: int assumes mn: "abs (m * n) = 1" shows "abs m = 1" proof have 0: "m \neq 0" using mn by auto have "~ $(2 \le abs m)$ " sorry thus "abs m = 1" using 0 by auto qed -u-:--- Struct.thy 35% L116 (Isar Utoks Abbrev; Scripting)------Successful attempt to solve goal by exported rule: $|\mathbf{m}| = 1$ lemma abs_m_1: $|?m * ?n| = 1 \implies |?m| = 1$ -u-:%%- *response* All L5 (Isar Messages Utoks Abbrev;)----tool-bar goto

000 Struct.thy 00 00 👗 🕨 🗴 🛏 🕌 specify m's type lemma abs_m_1: fixes m :: int declare a premise separately assumes mn: "abs (m * n) = 1" "abs m = 1" shows proof have 0: "m \neq 0" using mn by auto have "~ $(2 \le abs m)$ " sorry thus "abs m = 1" using 0 by auto qed -u-:--- Struct.thy 35% L116 (Isar Utoks Abbrev; Scripting)------Successful attempt to solve goal by exported rule: $|\mathbf{m}| = 1$ lemma abs m 1: $?m * ?n! = 1 \implies ?m! = 1$ -u-:%%- *response* All L5 (Isar Messages Utoks Abbrev;)---tool-bar goto

Starting a Nested Proof

```
\odot \bigcirc \bigcirc
                                      Struct.thy
                                                                                   \bigcirc
00 00 I 🔺 🕨 Y 🛏 🖀 🔎 🕦 🐷 🤤 🤣 🚏
lemma abs_m_1:
 fixes m :: int
 assumes mn: "abs (m * n) = 1"
  shows "abs m = 1"
proof -
 have 0: "m \neq 0" using mn
    by auto
 have "~ (2 \le abs m)"
    proof
thus "abs m = 1" using 0
    by auto
aed
-u-:**- Struct.thy
                       38% L129 (Isar Utoks Abbrev; Scripting)------
proof (state): step 6
goal (1 subgoal):
 1. 2 \leq |m| \implies False
-u-:%%- *goals*
                       Top L1
                                  (Isar Proofstate Utoks Abbrev;)------
Auto-saving...done
```

Starting a Nested Proof

A Nested Proof Skeleton

```
\odot \bigcirc \bigcirc
                                      Struct.thy
                                                                                   \bigcirc
00 00 I 🔺 🕨 Y 🛏 🖀 🔎 🕦 🐷 🤤 🤣 🚏
lemma abs_m_1:
fixes m :: int
  assumes mn: "abs (m * n) = 1"
  shows "abs m = 1"
proof -
  have 0: "m \neq 0" using mn
    by auto
  have "~ (2 \le abs m)"
    proof
    assume "2 ≤ abs m"
    thus "False"
       sorry
    ged
  thus "abs m = 1" using 0
    by auto
aed
-u-:**- Struct.thy 37% L133 (Isar Utoks Abbrev; Scripting )------
Successful attempt to solve goal by exported rule:
(2 \leq ini) \implies False
have \neg 2 \leq m
-u-:%%- *response*
                       All L4
                                  (Isar Messages Utoks Abbrev;)------
Auto-saving...done
```

A Nested Proof Skeleton

```
\odot \bigcirc \bigcirc
                                      Struct.thy
                                                                                   \bigcirc
🚥 😳 🛣 🔺 🕨 🗶 🛏 🖀 🔎 🗊 🐷 🤤 🤣 🚏
lemma abs_m_1:
fixes m :: int
  assumes mn: "abs (m * n) = 1"
  shows "abs m = 1"
proof -
  have 0: "m \neq 0" using mn
    by auto
  have "~ (2 \le abs m)"
                                assumption
    proof
    assume "2 ≤ abs m
     thus "False"
       sorry
    aed
  thus "abs m = 1" using 0
    by auto
aed
                     37% L133 (Isar Utoks Abbrev; Scripting )------
-u-:**- Struct.thy
Successful attempt to solve goal by exported rule:
(2 \leq ini) \implies False
have \neg 2 \leq m
-u-:%%- *response*
                       All L4
                                  (Isar Messages Utoks Abbrev;)------
Auto-saving...done
```

A Nested Proof Skeleton

```
\odot \bigcirc \bigcirc
                                       Struct.thy
                                                                                    \bigcirc
😳 😳 🛣 🔺 🕨 🗶 🛏 🖀 🔎 🗊 🐷 🤤 😵 🚏
lemma abs_m_1:
  fixes m :: int
  assumes mn: "abs (m * n) = 1"
  shows "abs m = 1"
proof -
  have 0: "m \neq 0" using mn
    by auto
  have "~ (2 \le abs m)"
                                 assumption
    proof
      assume "2 \le abs m
     thus "False" ≼
                                 conclusion
        sorry
    ged
  thus "abs m = 1" using 0
    by auto
aed
                     37% L133 (Isar Utoks Abbrev; Scripting )------
-u-:**- Struct.thy
Successful attempt to solve goal by exported rule:
(2 \leq ini) \implies False
have \neg 2 \leq m
-u-:%%- *response*
                       All L4
                                  (Isar Messages Utoks Abbrev;)------
Auto-saving...done
```

A Complete Proof

```
000
                                      Struct.thy
                                                                                   \bigcirc
😳 😳 🛣 🔺 🕨 🗶 🛏 🖀 🔎 🕦 🐷 🤤 🤣 🚏
lemma abs_m_1:
  fixes m :: int
  assumes mn: "abs (m * n) = 1"
        "abs m = 1"
  shows
proof -
  have 0: "m \neq 0" "n \neq 0" using mn
    by auto
  have "~ (2 \le abs m)"
  proof
    assume "2 \leq abs m"
    hence "2 * abs n \le abs m * abs n"
      by (simp add: mult_mono 0)
    hence "2 * abs n \leq abs (m*n)"
      by (simp add: abs_mult)
    hence "2 * abs n \leq 1"
      by (auto simp add: mn)
    thus "False" using 0
      by auto
  ged
  thus "abs m = 1" using 0
    by auto
aed
-u-:--- Struct.thy 43% L141 (Isar Utoks Abbrev; Scripting )-------
```

A Complete Proof

```
000
                                     Struct.thy
😳 😳 🛣 🔺 🕨 🗶 🛏 🖀 🔎 🗊 🐷 🤤 😏 🚏
lemma abs_m_1:
  fixes m :: int
  assumes mn: "abs (m * n) = 1"
        "abs m = 1"
  shows
proof -
  have 0: "m \neq 0" "n \neq 0" using mn
    by auto
  have "~ (2 \le abs m)"
  proof
    assume "2 \le abs m"
    hence "2 * abs n \le abs m * abs n"
      by (simp add: mult_mono 0)
    hence "2 * abs n \leq abs (m*n)"
                                           a chain of steps leads
      by (simp add: abs_mult)
    hence "2 * abs n \leq 1"
                                              to contradiction
      by (auto simp add: mn)
    thus "False" using 0
      by auto
  aed
  thus "abs m = 1" using 0
    by auto
aed
-u-:--- Struct.thy
                    43% L141
                                 (Isar Utoks Abbrev; Scripting )------
```

Calculational Proofs

Calculational Proofs

The Next Step

The Next Step

The Internal Calculation

000	Struct.thy	Ð
တ္ တ 🗶 🔺 🕨	• 🗴 H 🖀 🔎 🕦 🕼 😄 🤣 🚏	
by (simp a also have " by (simp a also have " by (simp a	<pre>abs m" abs n ≤ abs m * abs n" add: mult_mono 0) = abs (m*n)" add: abs_mult) = 1" add: mn)</pre>	0
 finally have thus "False" 	e "2 * abs n ≤ 1" .	Ă
	thy 60% L185 (Isar Utoks Abbrev; Scripting)	
calculation: 2 *		
-u-:%%- *respons	se* All L1 (Isar Messages Utoks Abbrev;)	
tool-bar next		11.

The Internal Calculation

The Internal Calculation

Ending the Calculation

000			Struct.thy	\supset
00 00	⊼ ∢ ⊳ ⊻ ≻	। 🖀 🔎 🐧) 🕼 🗢 😵	
proof ass hen	"~ (2 ≤ abs m)" ume "2 ≤ abs m" ce "2 * abs n ≤ y (simp add: mu]		os n"	Î
als by als	o have " = ak y (simp add: abs o have " = 1' y (simp add: mn)	os (m*n)" s_mult)		0
fin	ally have "2 * a	abs n \leq 1" .		Ă
	s "False" using Struct.thv		(Isar Utoks Abbrev; Scripting)	×.
	* in¦ ≤ 1			
	response	All L1	(Isar Messages Utoks Abbrev;)	
tool-ba	r next			11.

Ending the Calculation

Ending the Calculation

• The first line is have/hence

- The first line is have/hence
- Subsequent lines begin, also have "... = "

- The first line is have/hence
- Subsequent lines begin, also have "... = "
- Any transitive relation may be used. New ones may be declared.

- The first line is have/hence
- Subsequent lines begin, also have "... = "
- Any transitive relation may be used. New ones may be declared.
- The concluding line begins, finally have/ show, repeats the calculation and terminates with
 (.)