Interactive Formal Verification
[0: Structured Proofs

Tjark Weber
(Slides: Lawrence C Paulson)
Computer Laboratory
University of Cambridge

A Proof about “Divides”

bdvda < (3k.a=b x k)

Struct.thy

WWOE 4P Y HGg. s o

lemma
(auto simp add: dvd_def)

-u-:**- Struct.thy 12% L22 (Isar Utoks Abbrev; Scripting)
proof (prove): step 1
goal (2 subgoals):

1. Aka. n + k = k * ka = 3ka. n = k * ka
2. Nka. 3kb. k * ka + k = k * kb

A Proof about “Divides”

bdvda < (3k.a=b x k)

» Struct.thy

WO ZA 4P XYM 00w = 6 F

lemma "(k dvd (n k)) = (k dvd (n::nat))
apply (auto simp add: dvd_def)

Ve unfold the
definition and get...!

-u-:**- Struct.thy 12% L22 (Isar Utoks Abbrev; Scripting)

proof (prove): step 1

goal (2 subgoals):
1. Aka. n + k =k * ka = 3ka. n = k * ka
2. Nka. 3kb. k * ka + k = k * kb

A Proof about “Divides”

bdvda < (3k.a=b x k)

® OO0 s Struct.thy

DCO X 4P Y .o = 6 F

lemma "(k dvd (n + k)) = (k dvd (n::nat))"
apply (auto simp add: dvd_def)

Ve unfold the
definition and get...!

-u-:**- Struct.thy 12% L22 Isar Utoks Abbrev; Scripting)
proof (prove): step 1 an assumption

goal (2 subgoals
1. Aka. n + k =k * ka = 3ka. n = k * ka
2. Nka. 3kb. k * ka + k = k * kb

A Proof about “Divides”

bdvda < (3k.a=b x k)

® OO0 s Struct.thy

QWO R 4P Y. 0w o 66 P

lemma "(k dvd (n + k)) = (k dvd (n::nat))"
apply (auto simp add: dvd_def)

Ve unfold the
definition and get...!

-u-:**- Struct.thy 12% L22 Isar Utoks Abbrev; Scripting)
proof (prove): step 1 an assumption

goal (2 subgoals
1. Aka. n + k = k * ka = 3ka. n = k * ka
2. ANkaR3kb. k * ka + k = k * kb

locally bound variables

A Proof about “Divides”

bdvda < (3k.a=b x k)

®O0 s+ Struct.thy

QWO R 4P Y. 0w o 66 P

lemma "(k dvd (n + k)) = (k dvd (n::nat))"
apply (auto simp add: dvd_def)

Ve unfold the
definition and get...!

-u-:**- Struct.thy 12% L22 Isar Utoks Abbrev; Scripting)

proof (prove): step 1 ahn assumption

goal (2 subgoals
1. Aka. n + k = k * ka = 3ka. n = k * ka
2. ANkaR3kb. k * ka + k = k * kb

A messy proof with
locally bound variables two subgoals...

Complex Subgoals

Complex Subgoals

® |sabelle provides many tactics that refer to bound
variables and assumptions.

* Assumptions are often found by matching.

* Bound variables can be referred to by name, but
these names are fragile.

Complex Subgoals

® |sabelle provides many tactics that refer to bound
variables and assumptions.

* Assumptions are often found by matching.

* Bound variables can be referred to by name, but
these names are fragile.

® Structured proofs provide a robust means of
referring to these elements by name.

Complex Subgoals

® |sabelle provides many tactics that refer to bound
variables and assumptions.

* Assumptions are often found by matching.

* Bound variables can be referred to by name, but
these names are fragile.

Structured proofs provide a robust means of
referring to these elements by name.

Structured proofs are typically verbose but much
more readable than linear apply-proofs.

A Structured Proof

s Struct.thy
WO R 4P Y. 0w o 6P

lemma "(k dvd (n + k)) = (k dvd (n::nat))"
proof (auto simp add: dvd_def)
fix m
assume n + k = k * m"
hence "'"n =k * (m - 1)"
by (metis diff_add_inverse diff_mult_distrib2 nat_add_commute nat_mult_1_rig®
sht)
thus "Im'. n=k * m""
» by blast
next
fix m
show “Im". k * m+ k=k *m""
by (metis mult_Suc_right nat_add_commute)
ged
-u-:--- Struct.thy 2% L11 (Isar Utoks Abbrev; Scripting)

N ala

proof (prove): step 6

using this:
n=~k=*(m-1)

goal (1 subgoal):

1.3m". n=k *m'
-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
tool-bar goto

But how do you
write them!

The Elements of Isar

The Elements of Isar

® A proof context holds local variables and
assumptions of a subgoal.

* |In a context, the variables are free and the
assumptions are simply theorems.

Closing a context yields a theorem having the
structure of a subgoal.

The Elements of Isar

® A proof context holds local variables and
assumptions of a subgoal.

* |In a context, the variables are free and the
assumptions are simply theorems.

Closing a context yields a theorem having the
structure of a subgoal.

® The Isar language lets us state and prove
intermediate results, express inductions, etc.

Getting Started

@ Struct.thy
QL CO A 44 0 ¥ P"ﬂ.—’ﬁ.-@b@"z 7Y ?

lemma
proof (auto simp add: dvd_def)

-u-:**- Struct.thy 11% L22 (Isar Utoks Abbrev; Scripting)

proof (state): step 1

goal (2 subgoals):
1. Aka. n + k =k * ka = 3ka. n = k * ka
2. Nka. 3kb. k * ka + k = k * kb

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)

Getting Started

® O N + Struct.thy
QO Z 4P Y IHGg. .00 = o6 P

lemma "(k dvd (n + k)) = (k dvd (n::nat))"
proof (auto simp add: dvd_def)

indicates the start of a
structured proof

-u-:**- Struct.thy 11% L22 (Isar Utoks Abbrev; Scripting)

proof (state): step 1

goal (2 subgoals):
1. Aka. n + k = k * ka = 3ka. n = k * ka
2. Nka. 3kb. k * ka + k = k * kb

"/

A

4

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)--------ceeeeuua--
/4

The Proof Skeleton

- Struct.thy

QO X 4P XG4 .00 < 6 F

lemma
proof (auto simp add: dvd_def)
fix m
assume
show
sorry
next
fix m
show
sorry
ged

-u-:**- Struct.thy 11% L21 (Isar Utoks Abbrev; Scripting)

Successful attempt to solve goal by exported rule:
(n+k=k*2M2) = 3m". n=k *m'

Successful attempt to solve goal by exported rule:
Im'. k*2Zm2 + k=k *m’

lemma (?k dvd ?n + ?k) = (?k dvd 7n)

-u-:%%- *response* All L7 (Isar Messages Utoks Abbrev;)

The Proof Skeleton

» Struct.thy
QO R 4P Y HEg . 0w < o f

Llemma "(k dvd (n + k)) = (k dvd (n::nat))" P

proof (auto simp add: dvd_def)

Fix M €——— a name for the bound variable |
assume n + K = K ™ m

show "Im'. n=k * m""
sorry
next
fix m
show "3m’
sorry
ged

® 00O

-u-:**- Struct.thy 11% L21 (Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by exported rule:
(n+k=k*?2M2) = 3m".n=k *nm'

Successful attempt to solve goal by exported rule:
Im'. k* M2 + k=k *m'

lemma (?k dvd ?n + ?k) = (?k dvd 7?n)

-u-:%%- *response* All L7 (Isar Messages Utoks Abbrev;)

The Proof Skeleton

® OO0 s Struct.thy

QO Z 4P Y IHGg. .00 = o6 P

lLemma "(k dvd (n + k)) = (k dvd (n::nat))"
proof (auto simp add: dvd_def)
fix m <€
assume n + k =k *m"
show "Im'. n=k *m""
sorry
next
fix m
show "Im'". k *m+ k=k *m""
sorry
ged

-u-:**- Struct.thy 11% L21 (Isar Utoks Abbrev; Scripting)

 Successful attempt to solve goal by exported rule:
(n+k=k*?2M2) = 3m".n=k *nm'

Successful attempt to solve goal by exported rule:
Im'. k*MmM + k=k*mnm'

lemma (?k dvd ?n + ?k) = (?k dvd 7n)

-u-:%%- *response* All L7 (Isar Messages Utoks Abbrev;)

assumption

conclusion

The Proof Skeleton

® OO0 » Struct.thy

WO R 4P Y. 0w o 6P

Lemma "(k dvd (n + k)) = (k dvd (n::nat))"
& proof (auto simp add: dvd_def) :
Ny Fix m < - a name for the bound variable
assume "n + m"
show "3m’.
sorry
next
fix m
show "Im'". k * m+ k=k *m""
sorry
ged

-u-:**- Struct.thy 11% L21 (Isar Utoks Abbrev; Scripting)

Successful attempt to solve goal by exported rule:
(n+k=k*?2M2) = 3m".n=k *nm'

Successful attempt to solve goal by exported rule:
Im'. k* M2 + k=k*m'

lemma (?k dvd ?n + ?k) = (?k dvd 7n)

-u-:%%- *response* All L7 (Isar Messages Utoks Abbrev;)

assumption

conclusion

The Proof Skeleton

" Yala » Struct.thy
WO R 4P Y. 0w o 6P
Lemma "(k dvd (n + k)) = (k dvd (n::nat))"

fix m <€

assume n

show "3m'.
sorry

-u-:**- Struct.thy 11% L21 (Isar Utoks Abbrev; Scripting)

Successful attempt to solve goal by exported rule:
(h+k=k*?2M2) = 3m". n=k *m'

Successful attempt to solve goal by exported rule:
Im'. k* M2 + k=k*m'

lemma (?k dvd ?n + ?k) = (?k dvd ?n) ’e

v

-u-:%%- *response* All L7 (Isar Messages Utoks Abbrev;)------------coceeou-
/

The Proof Skeleton

®0OO0 s Struct.thy

QO X 4P Y. .o 00w = 0 F

assumption Lemma "(k dvd (n + k)) = (k dvd (n::nat))"
proof (auto simp add: dvd_def)
Ny FiXx m <€
conclusion assume "n +
show "3m'.
sorry

-u-:**- Struct.thy 11% L21 (Isar Utoks Abbrev; Scripting)

Successful attempt to solve goal by exported rule:
(n+k=k*MmM2) = 3m". n=k *n'

Successful attempt to solve goal by exported rule:
Im'. k* MM + k=k*m'

lemma (?k dvd ?n + ?k) = (?k dvd 7n)

-u-:%%- *response* All L7 (Isar Messages Utoks Abbrev;)------------

"/
A

4

/.

The Proof Skeleton

® O N » Struct.thy
QO Z 4P Y IHGg. .00 = o6 P

assumption lLemma "(k dvd (n + k)) = (k dvd (n::nat))"
proof (auto simp add: dvd_def)
Ny Fix m <€
conclusion assume "n +
show "“3m’'.

sorry
separates proofs of goals

sorry

qed < terminates the proof

-u-:**- Struct.thy 11% L21 (Isar Utoks Abbrev; Scripting)

Successful attempt to solve goal by exported rule:
(n+k=k*MmM2) = 3m". n=k *n'

Successful attempt to solve goal by exported rule:
Im'. k* MM + k=k*m'

lemma (?k dvd ?n + ?k) = (?k dvd ?n) ’e

-u-:%%- *response* All L7 (Isar Messages Utoks Abbrev;)-----=-cccceeaaeaaa-
4

Fleshing Out that Skeleton

Struct.thy
WO X 4P Y Mg .- 00w < 6P

» Llemma
proof (auto simp add: dvd_def)
fixm
assume 1:
have 2: using 1
sorry
show using 2
by blast
next
fixm
show
sorry
ged

-u-:**- Struct.thy 15% L37 (Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by exported rule:
(n+k=k*?2M2) = 3m".n=k *nm'

Successful attempt to solve goal by exported rule:
Im'. k*2Zm2 + k=k *m’

lemma (?k dvd ?n + ?k) = (?k dvd 7?n)

-u-:%%- *response* ALl L7 (Isar Messages Utoks Abbrev;)

Fleshing Out that Skeleton

A ™ ™
f®)

Struct.thy
QX A4P Y HNEG.060 < 6 F
»lemma "(k dvd (r) = (k dvd BT

proof (auto simp add: dvd_def)
fix m
assume 1: "

have 2: " : (m)" using 1
sorry T inserting a helpful fact
show "3m". | ‘ n'" using 2
by blast
next
fix m
show "
sorry

ged

-u-:**- Struct.thy 15% L37 (Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by exported rule:
(h+k=k*?2M2) = 3m". n=k *m'

Successful attempt to solve goal by exported rule:
Im'. k* M2 + k=k *m'

lemma (?k dvd ?n + ?k) = (?k dvd 7?n)

-u-:%%- *response* All L7 (Isar Messages Utoks Abbrev;)

Fleshing Out that Skeleton

labels for facts > Struct.thy

W CO A 4 p

plemma "(k dvd
proof (auto
fixm
assume 1: "n
have 2: "n
sorry
show “"3m'. n =
by blast
next
fixm
show "3m’
sorry
ged

-u-:**- Struct.thy 15% L37 (Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by exported rule:
(n+k=k*?2M2) = 3m".n=k *nm'

Successful attempt to solve goal by exported rule:
Im'. k* M2 + k=k *m'

lemma (?k dvd ?n + ?k) = (?k dvd 7?n)

-u-:%%- *response* All L7 (Isar Messages Utoks Abbrev;)

Fleshing Out that Skeleton

P lemma "(k dvd + k) =
proof (auto sAmp add: _dx
fix m

assume
have 2: 'n
sorry
show "3m’.
by blast
next
fix m
show "3m’.
sorry
ged

-u-:**- Struct.thy 15% L37 (Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by exported rule:
(n+k=k*?2M2) = 3m".n=k *nm'

Successful attempt to solve goal by exported rule:
Im'. k*MmM + k=k*mnm'

lemma (?k dvd ?n + ?k) = (?k dvd 7n)

-u-:%%- *response* All L7 (Isar Messages Utoks Abbrev;)

Fleshing Out that Skeleton

»lemma "(k dvd + k) =
proof (auto sAmp add: _dx
fix m
assume 1.~

have 2: " |)" ust ; ;
sorry — inserting a helpful fact
show "Im’'. n =
by blast <—
next a real proof!

fix m
show "Im". k * m + k =
sorry
ged

-u-:**- Struct.thy 15% L37 (Isar Utoks Abbrev; Scripting)

Successful attempt to solve goal by exported rule:
(n+k=k*?2M2) = 3m".n=k *nm'

Successful attempt to solve goal by exported rule:
Im'. k* M2 + k=k*m'

lemma (?k dvd ?n + ?k) = (?k dvd 7n)

-u-:%%- *response* All L7 (Isar Messages Utoks Abbrev;)

Completing the Proof

- Struct.thy
QO X 4P XG4 .00 < 6 F

lemma
proof (auto simp add: dvd_def)
fix m
assume 1:
have 2: using 1
by (metis diff_add_inverse diff_mult_distrib2 nat_add_commute nat_mult_1_rige
sht)
show using 2
by blast
next
fix m
show
» sorry
ged
-u-:**- Struct.thy 20% L65 (Isar Utoks Abbrev; Scripting)
Sledgehammer: external prover "spass" for subgoal 1:
Im'. k*m+k=k*m'
Try this command: apply (metis mult_Suc_right nat_add_commute)

For minimizing the number of lemmas try this command:

atp_minimize [atp=spass] mult_Suc_right nat_add_commute

Sledgehammer: external prover "e" for subgoal 1:

Im'. k*m+ k=k*m'

-u-:%%- *response* Top L1 (Isar Messages Utoks Abbrev;)
menu-bar Isabelle Commands Sledgehammer

Completing the Proof

(@ Struct.thy

mmx«»z»«@,-ow:ot

lemma "(k dvd
proof (auto 51mp add dvd def)
fix m ()

assume 1: : ¢
have 2: "r (m)" using 1
by (metis dtff add inverse diff_mult_distrib2 nat_add_commute nat_mult_1_rig®
sht) D e

Ty blast | S A found using sledgehammer

next
fix m
show "3n
» sorry
ged
-u-:**- Struct.thy 20% L65 (Isar Utoks Abbrev; Scripting)
Sledgehammer: external prover "spass" for subgoal 1:
Im'. k*m+ k=k*mnm'
Try this command: apply (metis mult_Suc_right nat_add_commute)
For minimizing the number of lemmas try this command:

atp_minimize [atp=spass] mult_Suc_right nat_add_commute

Sledgehammer: external prover "e" for subgoal 1:

Im'. k*m+k=k*m'

-u-:%%- *response* Top L1 (Isar Messages Utoks Abbrev;)
menu-bar Isabelle Commands Sledgehammer

Completing the Proof

® O N » Struct.thy
WO X 4P Y »G.. o600 = o F

lemma "(k dvd (n + k)) = (k dvd (n::nat))"
proof (auto simp add: dvd_def)
fix m
assume 1: "n + k = k * m" (}
have 2: "n = k * (m - 1)" using 1
by (metis diff_add_inverse diff_mult_distrib2 nat_add_commute nat_mult_1_rig®
sht) D

Moy blast | e found using sledgehammer

next
fix m
show "3m". |
» sorry '
ged I I
K ——. _s!edg__ehmm_er does it again!
Sledgehammer: external prover_~spass" for subgoal 1:
Im'. k*m+k=k*n'
Try this command: apply (metis mult_Suc_right nat_add_commute)
For minimizing the number of lemmas try this command:

atp_minimize [atp=spass] mult_Suc_right nat_add_commute

Sledgehammer: external prover "e" for subgoal 1:

Im'. k*m+k=k*m'

-u-:%%- *response* Top L1 (Isar Messages Utoks Abbrev;)
menu-bar Isabelle Commands Sledgehammer

Streamlining the Proof

assume 1:

have 2: ng 1
by (metis diff_add_inv erse d ff

show ing 2

Streamlining the Proof

assume 1: —_— assume
have 2: using 1 ——>» hence

by (metis diff_add_inverse diff by (metis diff_add_inverse diff
show using 2 —> thus

Streamlining the Proof

assume 1: assume
have 2: using 1 hence

by (metis diff_add_inverse diff by (metis diff_add_inverse diff
show using 2 thus

® hence means have — using the previous fact

Streamlining the Proof

assume 1: assume
have 2: using 1 hence

by (metis diff_add_inverse diff by (metis diff_add_inverse diff
how using 2 thus

SNC

® hence means have — using the previous fact

® thus means show — using the previous fact

Streamlining the Proof

assume 1: ssume
have 2: using 1 hence

by (metis diff_add_inverse diff by (metis diff_add_inverse diff
show using 2 hus

® hence means have — using the previous fact
® thus means show — using the previous fact

® There are numerous other tricks of this sort!

Another Proof Skeleton

Struct.thy
WO X 4P X4 .0 00w = 688

lemma abs_m_1:
fixes m :: int
assumes mn:
shows
proof -
have 0: using mn
by auto
have
sorry
thus using @
by auto
ged

-u-:--- Struct.thy 35% L116 (Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by exported rule:
:m: = 1

lemma abs_m_1:
m* 2n=1= 7m =1

-u-:%%- *response* All LS (Isar Messages Utoks Abbrev;)
tool-bar goto

Another Proof Skeleton

7 P P

QO X 4 P Y @

lemma abs_m_1:
fixes m :: int
assumes mn:
shows
proof -
have 9: using mn
by auto
have
sorry
thus using @
by auto
ged

> Struct.thy

specify m’s type

-u-:--- Struct.thy 35% L116 (Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by exported rule:
m =1

lemma abs_m_1:
m* 2n=1= 7?m =1

-u-:%%- *response* All L5 (Isar Messages Utoks Abbrev;)
tool-bar goto

Another Proof Skeleton

N\ ™ M

QCO X 4P Y @ .o : A
lemma abs_m_1: SPeCIf)’ INS type

fixes m :: int :
assumes mn: “abs (m * n) = 1" declare a premise separately

shows "abs m = 1
proof -
have @: "m # 0" using mn
by auto
have "~ (2 < abs m)"
sorry
thus "abs m = 1" using @
by auto
ged

» Struct.thy

-u-:--- Struct.thy 35% L116 (Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by exported rule:
m =1

lemma abs_m_1:
m* 2n=1= 7?7m=1

-u-:%%- *response* All L5 (Isar Messages Utoks Abbrev;)
tool-bar goto

Another Proof Skeleton

™ rNe rm

O X 4 P Y » & 5 ; :
lemma abs_m_1: SPeCIf)’ INS type

fixes m :: int :
assumes mn: “abs (m * n) = 1' declare a premise separately

shows "abs m = 1
proof -
have @: "m # 0'gusing mn
by auto
have "~ (2 < abs m)"
sorry o restricting the range of abs m
thus "abs m = 1" using @ = =
by auto
ged

» Struct.thy

-u-:--- Struct.thy 35% L116 (Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by exported rule:
m =1

lemma abs_m_1:
m* n=1= 7m=1

-u-:%%- *response* ALl L5 (Isar Messages Utoks Abbrev;)
tool-bar goto

Another Proof Skeleton

OO0 0 s Struct.thy

QQCO X 4 P> Y r @ 5

lemma abs_m_1: specify m’s type

fixes m :: int :
assumes mn: “abs (m * n) = 1" declare a premise separately

shows "abs m = 1
proof -
have @: "m # 0'gusing mn
by auto
have "~ (2 < abs m)"

sorry restricting the range of abs m

thus "abs m = 1" using @

by auto
qed ° ° °
makes the conclusion trivial

-u-:--- Struct.thy 35% L116 (Isar Utoks Abbrev; Scripting)

Successful attempt to solve goal by exported rule:
m =1

lemma abs_m_1:
m* n=1= 7m=1

-u-:%%- *response* All LS (Isar Messages Utoks Abbrev;)----==--ccceceecaaax

tool-bar goto

/.

Another Proof Skeleton

Y FNN FY

QO ZEZ 4P Y . € . 7
lemma abs_m_1: SPeCIf)’ INS type

fixes m :: int 2

assumes mn: "abs (m * n) = 1" declare a premise separately
shows "abs m = 1"

have @: "m # 0'gusing mn nuII PI’OOf step

by auto
have "~ (2 < abs m)"
sorry L restricting the range of abs m
thus "abs m = 1" using @ = =
by auto
ged

makes the conclusion trivial

» Struct.thy

-u-:--- Struct.thy 35% L116 (Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by exported rule:
m =1

lemma abs_m_1:
m* n=1= 7m=1

-u-:%%- *response* ALl L5 (Isar Messages Utoks Abbrev;)
tool-bar goto

Starting a Nested Proof

¢ Struct.thy
QWX 4P Y HMEg.o 0 < 6 F

lemma abs_m_1:
fixes m :: int
assumes mn:
shows
proof -
have 0: using mn
by auto
have
proof
» | thus using @
by auto
ged

-u-:**- Struct.thy 38% L129 (Isar Utoks Abbrev; Scripting)

proof (state): step 6

goal (1 subgoal):
1. 2 £ m = False

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Auto-saving. . .done

Starting a Nested Proof

N ™

(o Struct.thy
OO E 4P Y IHEG. @ =06 P

lemma abs_m_1:
fixes m :: int
assumes mn:
shows
proof -
have 9: using mn
by auto
have
roof <€
o] thus using @ default proof step
by auto
ged

-u-:**- Struct.thy 38% L129 (Isar Utoks Abbrev; Scripting)

proof (Stat63;(‘4:; 6

goal (1 subgoal):
1. 2 £ m = False

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Auto-saving. . .done

A Nested Proof Skeleton

Struct.thy
WO X 4P X4 .0 00w = 688

lemma abs_m_1:
fixes m :: int
assumes mn:
shows
proof -
have 0: using mn
by auto
have
proof
assume
thus
sorry
ged
» thus using @
by auto
ged
-u-:**- Struct.thy 37% L133 (Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by exported rule:
(2 £ 'm) = False

have = 2 < mi

-u-:%%- *response* ALl L4 (Isar Messages Utoks Abbrev;)
Auto-saving. . .done

A Nested Proof Skeleton

N ™

@ Struct.thy
QX A4 Y NG00 < 6 F

lemma abs_m_1:
fixes m :: int

assumes mn:
shows
proof -
have 9: using mn
by auto

have
proof

assume
thus
sorry
ged
» thus using 0
by auto
ged
-u-:**- Struct.thy 37% L133 (Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by exported rule:
(2 £ 'm) = False

have = 2 < mi

-u-:%%- *response* All L4 (Isar Messages Utoks Abbrev;)
Auto-saving. . .done

A Nested Proof Skeleton

N ™

(e Struct.thy
QO R 4P Y HEg. 00w < 0P
lemma abs_m_1:

fixes m :: int

assumes mn: ab

shows)
proof -

have @: "n - using mn

by auto
have " 2 < abs m)"

assume

thus "False"
ged

p thus "abs m " using @
by auto
ged
-u-:**- Struct.thy 37% L133 (Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by exported rule:
(2 £ 'm) = False

have = 2 < m

-u-:%%- *response* All L4 (Isar Messages Utoks Abbrev;)
Auto-saving. . .done

A Complete

» Struct.thy
WO A 4 P XYM 00w = 6 F

lemma abs_m_1:
fixes m :: int
assumes mn:
shows
proof -
have 0: using mn
by auto
have
proof
assume
hence
by (simp add: mult_mono 0)
hence
by (simp add: abs_mult)
hence
by (auto simp add: mn)
thus using 0
by auto
ged
thus using 0
by auto
ged

N N ™

-u-:--- Struct.thy 43% L141 (Isar Utoks Abbrev; Scripting)

A Complete Proof

OO0 s Struct.thy

QWO E 4P XYM 0w o o6 P

lemma abs_m_1:
fixes m :: int
assumes mn: “abs (m * n) = 1"
shows "abs m = 1"
proof -
have @: "m # 0" "n # 0" using mn
by auto
have "~ (2 = abs m)"
proof
assume "2 < abs m"
hence "2 * abs n < abs m * abs n"
by (simp add: mult_mono @)
hence "2 * abs n £ abs (m*n)"

by (simp add: abs_mult) a chain of steps leads

hence "2 * abs n = 1" < e
by (auto Simp add: mn) to Contrad|Ct|On
thus "False"” using @
by auto
ged
thus "abs m = 1" using @
by auto
ged

-u-:--- Struct.thy 43% L141 (Isar Utoks Abbrev; Scripting)

Calculational Proofs

» Struct.thy
O Z 4P XY M4 .00 = 6 F

have
proof
assume
hence
by (simp add: mult_mono @)
also have
by (simp add: abs_mult)
also have
by (simp add: mn)
finally have
thus using @
-u-:--- Struct.thy 60% L181 (Isar Utoks Abbrev; Scripting)

N N ™

proof (prove): step 11

goal (1 subgoal):
1. m * inin = m * n

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
(No files need saving)

Calculational Proofs

OO0 5 Struct.thy
QO X 4P Y. .o 00w = 0 F

have "~ (2 < abs m)"
proof
assume "2 < abs m"
hence "2 * abs n < abs m * abs n"
by (simp add: mult_mono @)
also have ... = abs (m*n)’
by (simp add: abs_mult)
also have "... = 1"
by (simp add: mn) .
finally have "2 * abs n = 1" . form d SErics Of

thus "False"” using @

u-i-—- Struct.thy 6% L181 equalities and inequalities

proof (prove): step 11

goal (1 subgoal):
1. m * ini='m * n

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)------=--ceeeaea--
(No files need saving) 4

The Next Step

» Struct.thy
QX A4P Y HNEG.060 < 6 F

have
proof
assume
hence
by (simp add: mult_mono @)
also have
by (simp add: abs_mult)
also have
by (simp add: mn)
finally have
thus using 0
-u-:--- Struct.thy 60% L184 (Isar Utoks Abbrev; Scripting)

NN ™

proof (prove): step 14

goal (1 subgoal):
1. m*n=1

-u-:%¥%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
tool-bar next

The Next Step

OO0 s Struct.thy
QO Z 4P Y IHGg. .00 = o6 P

have "~ (2 < abs m)"
proof
assume "2 < abs m"
hence "2 * abs n < abs m * abs n"
by (simp add: mult_mono @)
also have "... = abs (m*n)"

el ULl refers to the previous

also have "... 1
by (simp add: mn) I . I
finally have "2 * abs n = 1 I"Ight hand side
thus "False"” using @
-u-:--- Struct.thy 60% L184 (Isar Utoks Abbrev; Scripting)

proof (prove): step 14

goal (1 subgoal):
1. m*n=1

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)--------ceeeeeuaa-

tool-bar next y

The Internal Calculation

Struct.thy
QWX 4P XG0 < 66 F

have
proof
assume
hence
by (simp add: mult_mono 0)
also have
by (simp add: abs_mult)
also have
by (simp add: mn)
» finally have
thus using @
-u-:--- Struct.thy 60% L185 (Isar Utoks Abbrev; Scripting)
calculation: 2 * ini £ 1

-u-:%%- *response* All L1 (Isar Messages Utoks Abbrev;)
tool-bar next

The Internal Calculation

OO0 s Struct.thy
QO X 4P Y. .o 00w = 0 F

have "~ (2 < abs m)"
proof
assume "2 < abs m"
hence "2 * abs n < abs m * abs n"
by (simp add: mult_mono @)
also have "... = abs (m*n)"
by (simp add: abs_mult)
also have "... = 1"
by (simp add: mn)
» finally have "2 * abs n = 1" .
thus "False"” using @
-u-:--- Struct.thy 60% L185 (Isar Utoks Abbrev; Scripting)
calculation: 2 * ni £ 1

Isabelle displays the internal
calculation when it encounters

alsoand finally

"/
A

4

-u-:%%- *response* All L1 (Isar Messages Utoks Abbrev;)-----=-cccceeaaeaaa-
tool-bar next y

structure
of a
calculation

The Internal Calculation

OO0 s Struct.thy
WO R 4P Y. 0w o 6P
have "~ (2 < abs m)"

< abs m * abs n"
by (simp add: mult_mono @)
-y also have "... = abs (m*n)"
by (simp add: abs_mult)
———>also have "... = 1"

\\‘ak by (simp add: mn)
[

finally have "2 * abs n = 1" .

thus "False"” using @
-u-:--- Struct.thy 60% L185 (Isar Utoks Abbrev; Scripting)
calculation: 2 * ni £ 1

Isabelle displays the internal
calculation when it encounters

alsoand finally

"/

A

4

-u-:%%- *response* All L1 (Isar Messages Utoks Abbrev;)-----=-cccceeaaeaaa-
tool-bar next y

Ending the Calculation

Struct.thy
QO 2 4P XY M4 .00 = 6 F

have
proof
assume
hence
by (simp add: mult_mono @)
also have
by (simp add: abs_mult)
also have
by (simp add: mn)
finally have
» thus using @
-u-:--- Struct.thy 60% L186 (Isar Utoks Abbrev; Scripting)
have 2 * ni £ 1

-u-:%%- *response* All L1 (Isar Messages Utoks Abbrev;)
tool-bar next

Ending the Calculation

™ MmN

s Struct.thy
QO 4> X HG .o 0w =0 P

have "~ (2 < abs m)"
proof
assume "2 < abs m"
hence "2 * abs n < abs m * abs n"
by (simp add: mult_mono 0)
also have "... = abs (m*n)"
by (simp add: abs_mult)
also have "... = 1"
by (simp add: mn)
finally have "2 * abs n = 1" .
» thus "False"” using @
-u-:--- Struct.thy 60% L186
have 2 * ini £ 1 <«

VWVe have deduced
2 Xabsn =< |

\-u-:%%- *response* All L1 (Isar Messages Utoks Abbrev;)
tool-bar next

Ending the Calculation

N reaern

» Struct.thy

O X 4P Y. 200w < 6%

have "~ (2 < abs m)"
proof
assume "2 =< abs m"
hence "2 * abs n < abs m * abs n"
by (simp add: mult_mono 0)
also have "... = abs (m*n)"

by (simp add: abs_mult)
also have "... = 1" . . .

(G e T indicates a trivial proof
finally have "2 * abs n = 1" .

» thus "False"” using @
-u-:--- Struct.thy 60% L186

have 2 * ini £ 1 <«

VWVe have deduced
2 Xabsn =< |

-u-:%%- *response* All L1 (Isar Messages Utoks Abbrev;)
tool-bar next

Structure of a Calculation

Structure of a Calculation

® The first line is have/hence

Structure of a Calculation

® The first line is have/hence

® Subsequent lines begin,also have “...

Structure of a Calculation

® The first line is have/hence
® Subsequent lines begin,also have “... = “

® Any transitive relation may be used. New ones may
be declared.

Structure of a Calculation

The first line is have/hence
Subsequent lines begin,also have “... = “

Any transitive relation may be used. New ones may
be declared.

The concluding line begins, finally have/
show, repeats the calculation and terminates with

(-)

